Abstract

Steaming of narrow soil bands prior to sowing is a new technique that reduces the need for intra-row weeding in herbicide-free row crops. However, the steam treatment may eliminate both weed seeds and non-target soil organisms, thereby affecting the nutrient cycling in the soil. This study tested the effect of band-steaming on N and C dynamics in a sandy loam soil that was steamed in situ to maximal temperatures of 70–90°C using a prototype bandsteamer. Soil samples (0–5 cm depth) were collected during 90 days from band-steamed soil, undisturbed control soil, and control soil treated just mechanically with the bandsteamer. In the steamed soil, ammonium concentrations increased from 1.1 to 20.3 μg NH4+-N g−1 dry weight during 28 days. This coincided with an immediate and persistent inhibition of potential nitrification (33–61% inhibition during 90 days). Assays of the temperature response of potential nitrification confirmed the temperature sensitivity and showed an optimum temperature of 27.1°C and a temperature coefficient (Q10) of 1.9. The effects of band-steaming on concentrations of nitrate and water-soluble carbon were divergent and stimulatory, respectively, but generally not statistically significant. Mechanical effects of band-steaming were negligible. The observed ammonium surplus could be of agronomic benefit and should be evaluated in integrated studies of the effects of band-steaming on crop growth and plant N uptake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.