Abstract

Abstract —For a multirate approximation, we have determined the dynamics of rock heating by a magmatic-fluid flow in a flat permeable zone cutting the cratonic lithosphere of the Siberian Platform from a magma chamber at a depth of 50 km to the Earth’s surface. This dynamics is compared with the dynamics of infiltration metasomatism in a three-layer lithosphere section: (1) harzburgitic mantle (depth 50–40 km), (2) crystalline basement (39–7 km), whose composition was simulated by the section of rocks hosting the skarn deposits of the Aldan Shield, and (3) platform cover (6–0 km), with its simplified rock compositions specified on the basis of the rock compositions in the southern and northern parts of the trap area of the Siberian Platform. Numerical modeling of the metasomatic transformation of rocks was performed in a multireservoir flow reactor, using the Selektor software. The initial composition of fluids in a magmatic source varied from highly reduced (water–methane) to ordinary (water–acid) (lg pO2 from –13.0 to –12.0). The obtained balances of the interacting phases show no significant change in the mass of aluminosilicate rocks in the mantle and Earth’s crust sections and a significant loss of their mass under replacement of carbonate and sulfate deposits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.