Abstract

A localized point-like force applied perpendicular to a vesicular membrane layer, using an optical tweezer, leads to membrane nanotubulation beyond a threshold force. Below the threshold, the force-extension curve shows an elastic response with a fine structure (serrations). Above the threshold the tubulation process exhibits a new reversible flow phase for the multilamellar membrane, which responds viscoelastically. Furthermore, with an oscillatory force applied during tubulation, broad but well-resolved resonances occur in the flow phase, presumably matching the time scales associated with the vesicle-nanotubule coupled system. These nanotubules, anchored to the optical tweezer also provide, for the first time, a direct probe of the real-time dynamics of DNA self-assembly on membranes. Our studies are a step in the direction of analyzing the dynamics of membrane self-assembly and artificial nanofluidic membrane networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.