Abstract

Biological adhesion typically occurs through discrete cross bridges between complementary molecules on adjacent membranes. Here we report quantitative measurements of the binding distance between a lipid membrane functionalized with ligands on flexible polymer tether chains and a second membrane bearing complementary receptors using the surface force apparatus technique. The binding distance is shown to increase as a function of polymer tether length. Upon separation, adhesive failure occurs not at the strong ligand-receptor bond but primarily through the mechanical pullout of cross-bridging polymer tethers from the membrane. We summarize these measurements of complementary membrane adhesion dynamics using an energy-state diagram that encompasses the energetics of the polymer tether, ligand-receptor bond strength, and number of cross bridges formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.