Abstract

Fluorescence anisotropy decay measurements were performed on melittin in water and in membranes of dimyristoylphosphatidylcholine. The fluorescence of the single tryptophan residue of melittin and of a pyrene label attached to melittin was detected. In water, the slowest relaxation process in the anisotropy decay occurs with a relaxation time of 1.5 or 5.5 ns in the case of low or high ionic strength and corresponds to rotational diffusion of monomeric or tetrameric melittin. Superimposed on this slow process are fast processes in the subnanosecond range reflecting fluctuations of the fluorophores relative to the polypeptide backbone. In membranes, the fast relaxation processes are not much altered. A slow process with a relaxation time of 35 ns is observed and assigned to orientational fluctuations of the melittin helices in membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.