Abstract

Bose-Einstein condensates with time varying two- and three-body interatomic interactions, confined in a linear potential and exchanging atoms with the thermal cloud are investigated. Using the extended tanh-function method with an auxiliary equation, i.e., the Lenard equation, many exact solutions describing the dynamics of matter-wave condensates are derived. An important issue is the time management of the cubic and the quintic nonlinearities by tuning the rate of exchange of atoms between the condensate and the thermal background. In addition, adjusting the strength of the linear potential, the rate of exchange of atoms, and many other free parameters allow one to control many features of the condensate such as its height, width, position, velocity, acceleration, and its direction, respectively. Full numerical solutions corroborate the analytical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.