Abstract

An experimental system for measuring simultaneously photoacoustic (PA) and fluorescence signals is described. The simultaneous measurement of laser induced fluorescence and photoacoustic signals provide a suitable method for the study of different quenching phenomena occurring in fluorescent systems. In this paper we report tryptophan solvation dynamics in water using fluorescence and photoacoustic spectra recorded simultaneously by photoacoustic and fluorescence signals as functions of concentration, indicate that quantum yield is maximum at low concentrations. Also, the energy lost in the fluorescence path of tryptophan, due to different quenching phenomena like self quenching, Resonance energy transfer (RET), solvation relaxation, etc. is clearly seen from the photoacoustic signal intensity which increases as the fluorescence intensity decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.