Abstract

Fidelity serves as a benchmark for the reliability in quantum information processes, and has recently attracted much interest as a measure of the susceptibility of dynamics to perturbations. A rich variety of regimes for fidelity decay have emerged. The purpose of the present review is to describe these regimes, to give the theory that supports them, and to show some important applications and experiments. While we mention several approaches we use time correlation functions as a backbone for the discussion. Vanicek's uniform approach to semiclassics and random matrix theory provides important alternatives or complementary aspects. Other methods will be mentioned as we go along. Recent experiments in micro-wave cavities and in elastodynamic systems as well as suggestions for experiments in quantum optics shall be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.