Abstract
Laser-induced transfer of thin films is a simple single-step technique for surface patterning. In this paper the optimization principles and processes are outlined which led to successful application of the long-pulse laser transfer technique. The critical analysis of experiments on ns-pulse laser transfer of thin films of a variety of metals and the optimization study of the long-pulse laser transfer technique suggests that efficient deposition of high-quality patterns of micrometer dimensions can only be expected when using long laser pulses which not only produce ablation of the thin film pattern in solid phase but also maintain sufficient temperature during transfer and even on landing, to ensure film adherence. In order to identify and understand the different time-dependent processes determining the laser transfer, studies using optical and electron microscopy and static and time-resolved optical measurements were performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.