Abstract

BackgroundGalls or the neoplastic growth on plants result from a complex type of interaction between the inducers (Acari, Insects, Microbes and Nematodes) and plants. The present study sheds light on the gall inducing habit of a highly host specific eriophyid mite, Aceria pongamiae, on the leaves of Pongamia pinnata leading to the production of abnormal pouch like outgrowths on the adaxial and abaxial surfaces of the foliage. Each leaf gall is a highly complex, irregular massive structure, and the formation of which often leads to complete destruction of leaves, especially during heavy mite infestation, and thereby adversely affecting the physiology and growth of the host plant.ResultsThe study was carried out by making comparative observations on FE-SEM histological sections of galls representing four different growth stages categorized on the basis of difference in age groups. Apart from variations in cell metaplasia, a dramatic change was observed in the abaxial-adaxial polarity of the laminar surfaces also throughout the developmental sequence of galls, in all the four growth stages. Significant variations could be observed in the anti-oxidative potency as well as elemental composition in the all the four age groups of galls, and also revealed ATR-FTIR pattern of gall formation.ConclusionBeing the first attempt to unravel the mystery of gall induction by eriophyids in general and by A. pongamiae in particular, on its host plant P.pinnata, by shedding light on the structural and histological alterations taking place during leaf gall formation under the influence of the mite, the current study is to be treated as the model of plant-animal interactive system.

Highlights

  • Galls or the neoplastic growth on plants result from a complex type of interaction between the inducers (Acari, Insects, Microbes and Nematodes) and plants

  • It can be clearly confirmed that the gall acts as a sink, especially the inner gall regions, most of the essential or mobile nutrients for cellular growth and the nutrients for mites have been reached after the initial gall stage

  • Considering the economic utility of the plant and the highly complex and intricate host-plant mite interaction between the gall mite, A. pongamiae and its host P. pinnata (L.) the present study was selected to analyze the sequences and processes involved in gall formation, through extensive studies on gall morphology, histology, histochemistry, antioxidant properties, elemental analysis and Vibrational Bio-spectrum analysis

Read more

Summary

Introduction

Galls or the neoplastic growth on plants result from a complex type of interaction between the inducers (Acari, Insects, Microbes and Nematodes) and plants. Most of the eriophyid mites are highly host specific, showing extreme preference to feed on the meristematic and young soft tissues of plant organs which grow above the ground level, being highly rich in nutritional resources This type of astonishing selectivity of these mites very often results in inducing a wide range of symptomless to toxemic effects on their host plants as well as the development of varied symptoms ranging from simple to highly complex types such as russeting, curling, blistering, silvering, bronzing, distortions, necrotic lesions, bud deformations, erineal patches and pouched galls, witches broom effect, stunted growth and so on [5,6,7,8,9,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call