Abstract

To develop quantitative MRI techniques to measure, model, and visualize cerebrospinal fluid (CSF) hydrodynamics in normal subjects and hydrocephalic patients. Velocity information was obtained using time-resolved (CINE) phase-contrast imaging of different brain regions. A technique was developed to measure the change of lateral ventricle (LV) size. The temporal relationships between the LV size change, CSF movement, and blood flow could then be established. The data were incorporated into a first-principle CSF hydrodynamic model. The model was then used to generate specific predictions about CSF pressure relationships. To better-visualize the CSF flow, a color-coding technique based on linear transformations was developed that represents the magnitude and direction of the velocity in a single cinematic view. The LV volume change of the eight normal subjects was 0.901+/-0.406%. Counterintuitively, the LV decreases as the choroid plexus expands, so that they act together to produce the CSF oscillatory flow. The amount of oscillatory flow volume is 21.7+/-10.6% of the volume change of the LV from its maximum to its minimum. The quantification and visualization techniques, together with the mathematical model, provide a unique approach to understanding CSF flow dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.