Abstract
We first report that, for planar nematic 4-methoxy-benzilidene-4-butylaniline (MBBA), the electroconvection threshold voltage has a nonmonotonic temperature dependence, with a well-defined minimum, and a slope of about -0.12 V/degrees C near room temperature at 70 Hz. Motivated by this observation, we have designed an experiment in which a weak continuous-wave absorbed laser beam with a diameter comparable to the pattern wavelength generates a locally supercritical region, or pulse, in dye-doped MBBA. Working 10-20 % below the laser-free threshold voltage, we observe a steady-state pulse shaped as an ellipse with the semimajor axis oriented parallel to the nematic director, with a typical size of several wavelengths. The pulse is robust, persisting even when spatially extended rolls develop in the surrounding region, and displays rolls that counterpropagate along the director at frequencies of tenths of Hz, with the rolls on the left (right) side of the ellipse moving to the right (left). Systematic measurements of the sample-voltage dependence of the pulse amplitude, spatial extent, and frequency show a saturation or decrease when the control parameter (evaluated at the center of the pulse) approaches approximately 0.3. We propose that the model for these pulses should be based on the theory of control-parameter ramps, supplemented with new terms to account for the advection of heat away from the pulse when the surrounding state becomes linearly unstable. The advection creates a negative feedback between the pulse size and the efficiency of heat transport, which we argue is responsible for the attenuation of the pulse at larger control-parameter values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.