Abstract

This work is a continuation of our previous paper [Yermolaevetal2015] which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: CIR, ICME (both MC and Ejecta) and Sheath as well as the interplanetary shock (IS). Like in the previous work we use data of OMNI database, our catalog of large-scale solar-wind phenomena during 1976--2000 [Yermolaevetal2009] and the double superposed epoch analysis (DSEA) method [Yermolaevetal2010]: re-scaling the duration of interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. We present new detailed results of comparison of two pair phenomena: (1) both types of compression regions (CIR.vs.Sheath) and (2) both types of ICMEs (MC.vs.Ejecta). Obtained data allows us to suggest that the formation of all types of compression regions has the same physical mechanism irrespective of piston (High-Speed Stream (HSS) or ICME) type and differences are connected with geometry (angle between speed gradient in front of piston and satellite trajectory) and full jumps of speed in edges of compression regions. One of consequences of this hypothesis is the conclusion that one of the reasons of observed distinctions of parameters in MC and Ejecta can be fact that at measurements of Ejecta the satellite passes further from the nose area of ICME, than at measurements of MC. We also discuss the impact of Sheath in magnetospheric activity and its contribution in estimation of Sun's open magnetic flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.