Abstract

A model equation based on the equipartition of the turbulent dissipation is proposed for describing the dynamics of large-scale eddies in turbulent flows. The equation is reducible to the equation of motion of an inviscid fluid, so that the motion of the large-scale eddies can be described in terms of inviscid fluid dynamics. It is found that the large-scale eddies are always weakened by the background turbulence and their evolution is slowed down compared with the corresponding inviscid motion. In the case of turbulent mixing layer, its linear growth in downstream direction is accounted for by the exponential growth in time of the perturbation in an inviscid plane vortex sheet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call