Abstract

We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperatures. In particular, we consider the transverse field Ising and harmonic chains as prototypical models of noninteracting fermionic and bosonic excitations, respectively. Within the so-called hydrodynamic limit of large space-time scales we first discuss the mean values of the energy density and current, and then, aiming at the statistics of fluctuations, we calculate exactly the scaled cumulant generating function of the transferred energy. From the latter, the evolution of the associated large deviation function is obtained. A natural interpretation of our results is provided in terms of a semiclassical picture of quasiparticles moving ballistically along classical trajectories. Similarities and differences between the transferred energy scaled cumulant and the large deviation functions in the cases of noninteracting fermions and bosons are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call