Abstract

AbstractAmong Western Boundary Currents, the East Australian Current (EAC) has a more energetic eddy field relative to its mean flow, however, the relationship between upstream transport and downstream eddy kinetic energy (EKE) is still unclear. We investigate the modulation of downstream EKE in the EAC's typical separation region (Tasman EKE Box) (33.S–36.S) based on a long‐term (22‐year), high‐resolution (2.5–6 km) model simulation and satellite altimeter observations from 1994 to 2016. Our results show that the poleward EAC transport at S leads the EKE in the Tasman EKE Box by 93–118 days. Barotropic instabilities are the primary source of EKE, and they control EKE variability in the EAC system. Anticyclonic eddies shed from the EAC dominate from S–S during high‐EKE periods, but in low‐EKE periods anticyclonic eddies penetrate even further south by .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.