Abstract

The collision of low-flux vapor-generated Mg atoms with a methoxy-terminated self-assembled monolayer (SAM) at room temperature results primarily in nonreactive scattering from the surface. Those atoms that adsorb undergo reaction via O-C bond insertion to form Mg-O-R products, with an estimated activation energy of 38 ± 9 kJ mol -1 . These products, in turn, provide nucleation sites for the subsequent formation of Mg clusters. As growth continues, a nonuniform Mg overlayer eventually forms. These behaviors contrast with that of vapor-deposited Al (which shows a high sticking probability and low chemical reactivity under the same experimental conditions). This behavior is consistent with quantum chemical predictions of differences in the ability of the -OCH 3 group to stabilize these metal atoms. Overall, these results highlight the importance of dynamic processes in controlling the interfacial chemistry and metal overlayer morphology in vapor-deposited films on organic surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.