Abstract

Abstract This study reveals the dynamics behind the intensified, downslope, cross-isobath transport over a widened shelf (narrowing downwave) in the northeastern South China Sea (NSCS) during a downwelling event. Utilizing a three-dimensional numerical model over an idealized NSCS shelf, this study identified the forcing process and derived an analytical understanding of the invoked dynamics for the intensified downslope cross-isobath transport. This study found that the transport was formed by an amplified geostrophic transport because of an increased positive along-isobath pressure gradient force (PGF), PY*, and by an enhanced bottom Ekman transport due to converging flow over the widened shelf. Based on the depth-integrated vorticity dynamics, PY* was linked with net frictional stress curl in the water column and the curl was primarily associated with the shear vorticity field induced by downwelling jet. The increased positive vorticity seaside of the jet provided positive PY* for the downslope geostrophic transport. The cross-isobath PGF, PX*, which was geostrophically formed and shaped by the spatially asymmetric isobaths of the widened shelf, determined the intensities of the jet and thus the associated shear vorticity that quantified the respective bottom friction transport and PY* for the intensified cross-isobath transport. It was found that the downslope transport over the widened shelf was strengthened in a stratified flow by the linked intensifications of barotropic PX* or the concurrent downwelling jet, shear vorticity field, PY*, and bottom friction because of an increase of volume flux upstream of the widened shelf.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call