Abstract

Several models have been proposed as an extension to the classical Holling’s disc equation to evaluate the predator and prey interactions and their applied aspects in biological control and population regulation of the target organisms. In a one-prey and two-predator dynamic system with mutual interference m as a quadratic parameter of predator density, an evaluation was made of the resultant impact on the prey. A simulation was carried out to see the finite-time extinction of prey and the stability of the system at origin, i.e., when all three species are extinct. We assumed the data obtained was for the interactions between the mosquito and the water bug predators that are common in the freshwater wetlands and involved in population regulation. Despite the benefits to the prey population due to interference and competition, the expected extinction of prey in a finite time is still observed. With varying magnitudes of m, the declining growth curve of the prey population shifted. The equation proposed was also compared with the Crowley-Martin functional response, and considerable differences were observed in selected instances when compared to the growth rate of the predators in a species-specific manner. The stability of the system was deduced from the eigenvalues of the Jacobian matrix at the origin to prove the extinction is stable. Our assessment supports the possible cooccurrence of predators and mosquito prey in the wetlands, with mutual interference being one of the major factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call