Abstract
Input patterns to the olfactory bulb are dynamic and change in an odor-specific manner as measured by selective calcium imaging of olfactory bulb input. To our knowledge, none of the published models of olfactory bulb function uses dynamic input patterns. Therefore we tested how dynamic input alters the behavior of a simple model consisting of two layers. The membrane potential of the first-layer neurons, integrate-and-fire neurons corresponding to mitral cells, was modulated with a subthreshold oscillation at respiration frequency. The membrane potential of the second-layer neurons was used to discriminate input patterns. We implemented oscillating input with amplitudes and latencies different for each mitral cell. Not only varying the input amplitudes but also de-synchronizing the input, and varying the relation between latency and input amplitude, individually changed the model's performance significantly. The discrimination time was affected more easily than the number of second-layer neurons that can differentiate an odor pair. Increasing the de-synchronization, i.e., the spread of latency values, reduced the differences in response time between strong and weak stimulus pairs without reducing the number of reacting cells. Input phase relative to the subthreshold oscillation altered the effect of de-synchronization. Thus dynamic input changes performance parameters of models of olfactory information processing that can be verified experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.