Abstract
AbstractWe explore a simple model of network dynamics which has previously been applied to the study of information flow in the context of epidemic spreading. A random rooted network is constructed that evolves according to the following rule: at a constant rate, pairs of nodes (i, j) are randomly chosen to interact, with an edge drawn from i to j (and any other out-edge from i deleted) if j is strictly closer to the root with respect to graph distance. We characterise the dynamics of this random network in the limit of large size, showing that it instantaneously forms a tree with long branches that immediately collapse to depth two, then it slowly rearranges itself to a star-like configuration. This curious behaviour has consequences for the study of the epidemic models in which this information network was first proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.