Abstract

This study employs an analytical model to describe the rocking response of a masonry arch to in-plane seismic loading. Through evaluation of the rate of energy input to the system, the model reveals the ground motions that cause maximum rocking amplification. An experimental investigation of small-scale masonry arches subjected to past earthquake time histories is used to evaluate the analytical model and to explore arch rocking behaviour. The results demonstrate that rocking amplification can occur, but is highly sensitive to slight variations in the ground motion. Thus, the accuracy to which the arch response can be predicted is brought into perspective. The concept that the primary impulse of an expected ground motion is fundamentally important in predicting arch collapse is evaluated in light of the developed energy approach. Finally, a statistical method is proposed for predicting the probability of arch collapse during seismic loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call