Abstract

AbstractAnnealing effects on InP (110) surfaces were observed in situ using a modified ultrahighvacuum transmission electron microscope equipped with a specimen heating holder. Reflection electron microscopy (REM) was used to record the dynamics of nucleation and growth of liquid In clusters at 650°C, following the desorption of P from the surface. These droplets showed no preference for nucleation at surface steps, and the steps appeared stationary throughout the annealing process. Two distinct types of In cluster growth rates and shape evolutions were detected. A model was developed to decouple height and length information in the REM images. Contact angle and volume above the InP(110) surface were calculated from the dynamic data. The change of contact angle with time provides evidence for sub-surface cluster etching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.