Abstract

Purpose: To investigate the effects of interferon-β-1a (IFN-β-1a) on the trafficking of cell populations in peripheral blood cells of multiple sclerosis (MS) patients. Methods: In this open-label pharmacodynamic study, peripheral blood was obtained from 10 relapsing–remitting (RR) MS patients just prior to and at 1, 2, 4, 8, 24, 48, 120, and 168 h after intramuscular injection of 30-μg IFN-β-1a. Timed samples were also obtained from five controls at 0, 8, 24, 48 and 168 h. The blood cells were analyzed using four-color flow cytometry with antibody conjugates directed against cell surface proteins specific for T cells, B cells, NK cells, and the activation marker, CD69. Results: IFN-β-1a treatment resulted in selective, time-dependent effects on many cell populations in peripheral blood. The trafficking of T-helper and T-suppressor/cytotoxic subsets of T cells were qualitatively different. The most prominent effects were on the trafficking of natural killer cells, the levels of which decreased to 23.5% of pretreatment values at 8 h after treatment. The levels of CD69-positive NK cells increased to a peak value of 606% of pretreatment levels at the 24-h time point. In untreated controls, these characteristic trafficking effects were not observed. There was inter-patient heterogeneity in the levels of activated NK cells at the 6-month time point that may potentially be relevant for individualizing IFN-β therapy. Conclusions: IFN-β treatment can induce specific, selective, and time-dependent trafficking of cells and its effects on different subsets of a given cell type are not qualitatively similar. The dynamics indicate that the activation of NK cells by IFN-β is possibly dependent on the trafficking of NK cells. The activated NK cell levels after prolonged therapy may potentially provide a surrogate marker for IFN-β exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call