Abstract

Although the stability of the nanobubble remains a controversial issue that is subject to the classical predictions of high Laplace pressure, we demonstrate that a hydrogen nanobubble can be generated and stabilized in an aqueous solution of Keyhole limpet hemocyanin (KLH) protein via an electron radiolysis process. The hydrogen gas inside the nanobubble is in a “dense gas” phase that is characterized by a Knudsen number and number density of hydrogen molecules. The dynamics of nanobubbles are analyzed using time-series electron microscopy images. The growth of small nanobubbles will be affected by the largest neighboring nanobubble; however, a diffusive shielding effect for small nanobubbles is observed. Locally, anti-Ostwald ripening of nanobubbles can be observed; however, the global growth behavior among the nanobubbles is randomly correlated because the characteristic diffusion length of the hydrogen molecules is considerably greater than the average spacing among the nanobubbles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.