Abstract
The design of materials capable of mechanical responses to physical and chemical stimuli represents one of the most exciting and challenging areas of scientific research because of the huge number of their potential applications. This article is focused on the molecular events occurring in thin films of carboxylated nanocellulose fibers, which are capable of converting water gradients into mechanical movements at the macroscopic scale. The analysis of the mechano‐actuation, and of the conditions to obtain it, shows that the film movement is fast and reproducible, the gradient intensity is transduced into rate of displacement, and the response is observed at vapor pressures as low as 1.2 mm Hg. The actuation mechanism is associated to an efficient and reversible water sorption process by the hydrophilic nanocellulose fibers at the film interface. Conversely, water desorption is slow and follows a kinetic behavior supporting the presence of two binding sites for water molecules. The adsorbed water induces swelling of the surface nanocellulose layers and local structural rearrangement, however transitions between ordered and random coil conformations are not observed. The understanding of the actuation mechanisms of nanocellulose offers exciting opportunities to design macroscopic structures responding to chemical gradients by the assembly of simple molecular components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.