Abstract

We present experimental and theoretical results concerning the forced filling and spontaneous drying of hydrophobic cylindrical mesopores in the dynamical regime. Pores are structured with organic/inorganic moieties responsible for a periodicity of the surface energy along their axis. We find that the forced intrusion of water in these hydrophobic pores presents a slow dynamics: the intrusion pressure decreases as the logarithm of the intrusion time. We find that this slow dynamics is well described quantitatively by a classical model of activated wetting at the nanoscale, giving access to the structural length scales and surface energies of the mesoporous material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.