Abstract
This work proposes a novel stochastic model describing the propagation dynamics of the hepatitis B virus. The model takes into account numerous disease characteristics, and environmental disturbances were collected using Lévy jumps and the conventional Brownian motions. Initially, the deterministic model is developed, and the asymptotic behavior of the model’s solution near the equilibria is examined. The deterministic model is transformed into a stochastic model while retaining the Lévy jumps and conventional Brownian motions. Under specific assumptions, the stochastic system is shown to have a unique solution. The study further investigates the conditions that ensure the extinction and persistence of the infection. The numerical solutions to both stochastic and deterministic systems were obtained using the well-known Milstein and RK4 techniques, and the analytical findings are theoretically confirmed. The simulation suggests that the noise intensities have a direct relationship with the amplitudes of the stochastic curves around the equilibria of the deterministic system. Smaller values of the intensities imply negligible fluctuations of trajectories around the equilibria and, hence, better describe the extinction and persistence of the infection. It has also been found that both Brownian motions and the Lévy jump had a significant influence on the oscillations of these curves. A discussion of the findings of the study reveals other important aspects as well as some future research guidelines. In short, this study proposes a novel stochastic model to describe the propagation dynamics of the hepatitis B virus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.