Abstract

The ionization dynamics of an initially excited aligned H(2p, m = 0) atom exposed to short intense laser pulses is studied in the non-perturbative regime based on a three-dimensional numerical solution of the time-dependent Schrödinger equation on a spherical grid. The laser pulse is given a linear polarization vector which defines an angle θ with the symmetry axis of the initial 2p state. Strong orientation effects for ionization are found as a function of polarization direction for high laser frequencies. The angular distribution of the photo-electron spectrum shows two characteristic features related to ionization dynamics and interference of parallel versus perpendicular states with respect to the polarization direction of the field. For high enough field intensities, the ionization probability saturates below unity. In this limit, the angular electronic distribution is insensitive to the laser polarization direction. Another characteristic feature is a complete suppression of multiphoton peaks which results in kinetic emission spectra dominated by slow electrons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.