Abstract
Dynamics of the Eley-Rideal (ER) abstraction of H2 from W(110) is analyzed by means of quasi-classical trajectory calculations. Simulations are based on two different molecule-surface potential energy surfaces (PES) constructed from Density Functional Theory results. One PES is obtained by fitting, using a Flexible Periodic London-Eyring-Polanyi-Sato (FPLEPS) functional form, and the other by interpolation through the corrugation reducing procedure (CRP). Then, the present study allows us to elucidate the ER dynamics sensitivity on the PES representation. Despite some sizable discrepancies between both H+H/W(110) PESs, the obtained projectile-energy dependence of the total ER cross sections are qualitatively very similar ensuring that the main physical ingredients are captured in both PES models. The obtained distributions of the final energy among the different molecular degrees of freedom barely depend on the PES model, being most likely determined by the reaction exothermicity. Therefore, a reasonably good agreement with the measured final vibrational state distribution is observed in spite of the pressure and material gaps between theoretical and experimental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.