Abstract

The dynamics of elementary rate processes for H+O2 collisions on an ab initio potential energy surface have been simulated by quasiclassical trajectory theory (QCT). For H+O2 (v=0,j=1), we have obtained the reaction probabilityP r (E,b) as a function of collision energy E and impact parameterb, the reaction cross sectionS r as a function ofE, and the average values $$\bar \upsilon _\alpha ', \bar j_\alpha '$$ of the product quantum numbers of OH. For H+02 (v=2,j=1, 20, 40, 60, 80, 100;v=1, 3, 4, 5,j=1) atE=0.3 eV, we have found thatb max is about 4.5a 0 and the impact parameter at whichP r is maximum decreases asj increases. The reaction cross section increases asj andv become large. For inelastic collisions, whenb is small andj is large, the $$\bar \upsilon '_{0_2 } $$ and $$\bar j'_{0_2 } $$ are both small. For reactive collisions, $$\bar \upsilon {}_{OH}'$$ almost equals zero, but the probability of $$\bar \upsilon {}_{OH}'$$ being larger than zero increases with increasingj; and¯v′ OH even shows population inversion forj=100. Additional details of the dynamics are shown in figures of interparticle distance and stereographs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.