Abstract

Monte Carlo simulations of simple models of star-branched polymers were carried out. The model chains were confined to simple cubic lattice and consisted of f = 3 branches of equal length and the total number of polymer segments as well as the density of grafted chains on the surface were varied. The chains have had one arm end attached to an impenetrable plate. The simulations were performed by employing the set of local micromodifications of the chain conformations. The model chains were athermal, i.e. good solvent conditions were modeled, the excluded volume effect was present at the model. The density of grafted chains on the surface was varied from a single chain up to 0.3. The static and dynamic properties of the system were studied. The influence of polymer concentration as well as the polymer length on static and dynamic properties of the system studied was shown. The relation between the structure and short-time dynamics (relaxation times) was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.