Abstract
The dielectric relaxation of ammonia-water mixtures was studied for a range of NH3 mole fractions x. For 0.01 ≤ x < 0.33, the samples can be supercooled relatively easily. In this composition range, the relaxation strength is proportional to x. The dielectric relaxation times display a super-Arrhenius behavior, are independent of the NH3 content in the specified range, and, for T > 250 K, line up smoothly with those of pure water. The relaxation behavior of glass forming ammonia hydrates was also investigated using nuclear magnetic resonance techniques including deuteron relaxometry and stimulated-echo spectroscopy, as well as static field-gradient proton diffusometry. These experiments yielded additional insights into the rotational and translational dynamics of ammonia hydrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.