Abstract

In this paper, we explore the dynamical properties of geometric phase for a composite quantum system under the nonlocal unitary evolution. As an illustrative example, the analytical expressions of geometric phase are derived for the dimer system. We find that geometric phase presents some interesting properties with coupling strengths (corresponding to nonlocal unitary evolution), such as dynamical oscillation behavior with time evolution, monotonicity, symmetry, etc. We show that the geometric phase and entanglement have the same period for some conditions. Moreover, we discuss geometric phase of the whole system and its subsystems. Our investigations show that geometric phase can reflect some inherent properties of the system: it signals a transition from self-trapping to delocalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.