Abstract

A numerical model is developed to study the temperature effect on stability and phase transformation of gas-hydrate. The model uses a mathematical formulation based on the enthalpy form of the conservation law of energy. The use of the enthalpy form instead of the temperature form as often done in the literature has made the problem numerically simpler. The model is then applied to describe the effect of sea bottom temperature variations on the stability of gas hydrate occurrences and on the seafloor reflectivity in sediments of the Congo continental slope. Indeed, a migrating seafloor reflectivity front is observed on 3D seimic images from two surveys performed 6 months apart and interpreted as a migrating gas hydrate stability zone. Seawater temperature variations were recorded over a 230-day period. At the seafloor, the amplitude of these variations could explain a 75-m shift in water depth of the upper limit of the gas hydrate stability zone. However, the response of the sediment to a perturbation applied at the seafloor is not immediate because of the effects of thermal diffusion and of latent heat of hydrate dissociation. Thermal modelling shows that the depth of penetration of these perturbations is around 2 m for the saturated sediment and around 6 m for hydrate-bearing sediments (hydrate fraction of 0.1). The switch between gas and gas hydrate generated by these temperature fluctuations concern only the first meter of sediment. These appear too small to explain the migration of the seafloor reflectivity, considering that the wavelength of the seismic signal is significantly larger (around 10 m). However, for temperature fluctuations with larger wavelength the switch between gas and gas hydrate will be more important and consequently could explain the reflectivity contrast as a possible migrating gas or gas hydrate front.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.