Abstract

For all nervous systems, motoneurons are the main output pathway. They are involved in generating episodic motor activity as well as enduring motor rhythms. To determine whether changes in cytosolic Ca(2+) correlate with motor performance, we studied the spatiotemporal dynamics, mode of entry and role of free intracellular Ca(2+) in cricket (Gryllus bimaculatus) front leg tibial extensor and flexor motoneurons. Synaptic activation or intracellular depolarising current injection uniformly increased Ca(2+) with the same dynamics throughout the primary and secondary branches of the dendritic tree of all motoneurons. Ca(2+) rise times (mean tau(rise), 233-295 ms) were lower than decay times (mean tau(decay), 1927-1965 ms), and resulted in a Ca(2+) plateau during repetitive activation, such as during walking. The neurons therefore operate with a different Ca(2+) level during walking than during episodic leg movements. Ca(2+) enters the dendritic processes of motoneurons via a voltage-activated mechanism. Entry is driven by subthreshold excitation, and is largely independent of the neurons' spiking activity. To what extent ligand-activated mechanisms of Ca(2+) entry operate remains uncertain. We found no evidence for any prominent Ca(2+)-activated secondary currents in these motoneurons. Excitatory postsynaptic potentials evoked by extracellular stimulation of descending neurons were unaffected by the level of free intracellular Ca(2+). The activity of tibial motoneurons therefore appears to be only weakly dependent on the level of free intracellular Ca(2+) in dendrites. This is different to what has been found for many other neurons studied, and may represent an essential prerequisite for insect motoneurons to support a wide range of both episodic and rhythmic motor sequences underlying behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call