Abstract

A physically based model for the evolution of dry, two-dimensional foams based on a combination of mass transfer, vertex movement, and edge relaxation, enables efficient and accurate simulation with and without wall rupture. The stochastic nature of topological transitions due to numerical error has been carefully examined and may explain the discrepancies found among various simulations. The separation of vertex and edge movements permits a study of foam evolution that includes wall rupture. Comparison with recent experimental results is presented that demonstrates that certain, semiempirical {open_quotes}breaking rules{close_quotes} are capable of reproducing both the overall topological evolution and certain scaling behavior observed in the experiments. {copyright} {ital 1996} {ital The American Physical Society}

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.