Abstract

The multidimensional Potential Energy Hypersurface (PEHS) for the cyclononane molecule was comprehensively investigated at the Hartree-Fock (HF), and Density Functional Theory (DFT) levels of theory. Second-order Møller-Plesset perturbation theory (MP2) optimizations were also carried out to confirm the low-energy conformations. The previously reported Geometrical Algorithm to Search Conformational Space (GASCOS) has been used to generate the starting geometries for the conformational analysis. The GASCOS algorithm combined with ab initio and DFT optimization permits searching of the potential energy hypersurface for all minimum-energy conformations as well as transition structures connecting the low-energy forms. The search located all previously reported structures together with 11 transition states, some of which were not found by earlier searching techniques. Altogether, 16 geometries (five low-energy conformations and 11 transition states) were found to be important for a description of the conformational features of cyclononane. RB3LYP/aug-cc-pVTZ//RB3LYP/6-31G(d) calculations suggest a conformational mixture between the twist boat-chair and twist chair-boat conformations as the preferred forms. In addition only the twist chair-chair conformation with 1.52 kcal/mol above the global minimum should contribute somewhat to the equilibrium mixture of conformations. Our results allow us to form a concise idea about the internal intricacies of the 9D vector space describing the conformation of cyclononane as well as the associated conformational potential energy hypersurface of nine independent variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.