Abstract

An approach suited for automatic generation of the equations of motion for large mechanical systems (i.e., large space structures, mechanisms, robots, etc.) is presented. The system topology is restricted to a tree configuration. The tree is defined as an arbitrary set of rigid and flexible bodies connected by hinges characterizing relative translations and rotations of two adjoining bodies. The equations of motion are derived via Kane's method. The resulting equation set is of minimum dimension. Dynamical equations are imbedded in a computer program called TREETOPS. Extensive control simulation capability is built in the TREETOPS program. The simulation is driven by an interactive set-up program resulting in an easy to use analysis tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.