Abstract

The dynamics of first-order phase transitions in two-dimensional Ising systems with long-range interactions has been studied by means of numerical simulations using the Metropolis Monte Carlo method. The kinetics of domain growth was examined at early times for spinodal decomposition for both conserved and nonconserved order parameters; the resultant behavior was found to be in agreement with linear theory, as predicted by Binder. The late stages of domain growth for nonconserved order parameters were also studied and the results were in agreement with the Allen-Cahn growth law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.