Abstract
Excess water in the rooting zone critically reduces tree growth and may even kill trees; however, the relative importance of damage to roots versus aboveground parts and the time course of damage are not well understood. We studied the dynamics of fine-root growth and mortality of 7-year-old Scots pine (Pinus sylvestris L.) saplings affected by a 5-week period of waterlogging (WL) during the growing season. Two out of six WL-exposed saplings survived the treatment. After 1–2 weeks of WL, the mortality of the first-order short roots (usually mycorrhizas) started to increase and the production of these roots started to decrease. WL decreased the longevity of short and long roots. Total root length (especially of fine roots with a diameter < 0.5 mm), specific fine-root length, total root dry mass (including stump), and reverse-flow root hydraulic conductance were lower in WL saplings than in control saplings at the end of the experiment; however, several root traits were similar in control and surviving WL saplings. Because of the high importance of fine roots for tree growth and carbon sequestration, their responses to elevated water tables should be considered in sustainable use and management of boreal peatland forests, for example, by continuous cover forestry and (or) ditch network maintenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.