Abstract

Manipulating nanowires with external magnetic fields has emerged as a powerful tool in various engineering applications, which prompts an urgent need to better understand the dynamics of nanowire rotation under different control conditions. In this article, the motion of ferromagnetic nickel (Ni) nanowires under a rotating magnetic field was investigated both theoretically and experimentally. The synchronous and asynchronous rotations were characterized in detail. Analytical models were developed for the major modes of motion by solving the governing equations of rotation. Particularly, a selection of theoretical formula for fluid viscous torque on nanowires of large aspect ratios was made based on the computational fluid dynamics simulation results. The comparisons of the theoretical prediction and the experimental data showed very good agreement. The effects of various system variables, such as the strength and rotating frequency of the magnetic field and the nanowire aspect ratio, were examined. Hence, the insights gained from this work can be applied to future exploration of magnetic manipulation of nanowires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.