Abstract

Geometric quantum discord of fermionic systems in the relativistic regime, that is, beyond the single-mode approximation, is investigated. It is shown that geometric quantum discord for the fermionic systems in non-inertial frames converges at an infinite acceleration limit, which means that the fermionic systems become independent of the choice of Unruh modes (qR) beyond single-mode approximation. The discord may vanish or be retained depending upon the level of mixedness of the fermionic system. The dynamics of geometric discord are investigated under amplitude damping, depolarizing, phase damping and flipping channels. The vanishing behavior of discord is seen for a higher level of decoherence in the infinite acceleration limit. The depolarizing channel dominantly affects the fermionic geometric discord as compared to the amplitude and phase damping channels. This implies that the depolarizing channel has most destructive influence on the discord of the fermionic systems. However, the flipping channels have a symmetrical effect on the discord. Moreover, the discord heavily depends on the mixedness parameter of the quantum state of the fermionic systems in accelerated frames beyond single-mode approximation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call