Abstract
We investigated spatiotemporal evolution of expanding ablation plume of aluminum created by a 100-fs, 1014–1015-W/cm2 laser pulse. For diagnosing dynamic behavior of ablation plume, we employed the spatiotemporally resolved X-ray absorption spectroscopy (XAS) system that consists of a femtosecond-laser-plasma soft X-ray source and a Kirkpatrick–Baez (K–B) microscope. We successfully assigned the ejected particles by analyzing structure of absorption spectra near the LII,III absorption edge of Al, and we clarified the spatial distribution of Al+ ions, Al atoms, and liquid droplets of Al in the plume. We found that the ejected particles strongly depend the irradiated laser intensity. The spatial distribution of atomic density and the expansion velocity of each type of particle were estimated from the spatiotemporal evolution of ablation particles. We also investigated a temperature of the aluminum fine particles in liquid phase during the plume expansion by analyzing the slope of the LII,III absorption edge in case of 1014-W/cm2 laser irradiation where the nanoparticles are most efficiently produced. The result suggests that the ejected particles travel in a vacuum as a liquid phase with a temperature of about 2500 to 4200 K in the early stage of plume expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.