Abstract

The paper deals with the spontaneous coherence building up between exciton-polaritons trapped in an array of deep potential wells in the presence of an incoherent pump. A theoretical approach based on a standard tight-binding mean-field approximation is used to reduce the continuous periodic problem to a discrete model. The typical dynamics of the nonlinear exciton-polariton system for the cases of spatially uniform and for localized pumps are discussed. Special attention is paid to the ``staggered'' coherent steady states with $\ensuremath{\pi}$ jumps in the phases between neighboring sites and to ``uniform'' states with a smooth phase distribution. It is shown that, apart from the states with a single frequency, mixed states with spectra with several harmonics can form in the system. The selection mechanism that controls the type of steady state growing from a weak noise is studied. It is found that in the case of localized pumps the decaying tails of the solutions play a crucial role in the dynamics of the polaritons. The applicability of the obtained theoretical results for a qualitative explanation of the complex phenomena observed in recent experiments is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.