Abstract

We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se diluted-magnetic-semiconductor quantum wells using time-resolved photoluminescence (PL). The magnetic field and temperature dependencies of this dynamics allow us to separate the non-magnetic and magnetic contributions to the exciton localization. We deduce the EMP energy of 14 meV, which is in agreement with time-integrated measurements based on selective excitation and the magnetic field dependence of the PL circular polarization degree. The polaron formation time of 500 ps is significantly longer than the corresponding values reported earlier. We propose that this behavior is related to strong self-localization of the EMP, accompanied with a squeezing of the heavy-hole envelope wavefunction. This conclusion is also supported by the decrease of the exciton lifetime from 600 ps to 200 - 400 ps with increasing magnetic field and temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.