Abstract
The dynamics of the excited states of the carotenoid peridinin in polar solvents were studied using femtosecond transient absorption spectroscopy in the spectral range of 500−1900 nm. A broadening of the absorption spectrum in polar solvents is caused by a distribution of conformers having different ground-state properties. In addition, the dependence of the peridinin lifetime on the excitation wavelength reveals that two peridinin forms coexist in protic solvents, where a “red”-absorbing form is produced by hydrogen bonding via the carbonyl group. The observed dynamics show that the S1 and intramolecular charge transfer (ICT) states of peridinin are strongly coupled, forming a collective S1/ICT state whose lifetime is determined by the degree of ICT character. In nonpolar solvent, pure S1 character with a lifetime of ∼160 ps is observed, whereas in polar solvents an increase in the ICT character leads to a lifetime as short as 10 ps in methanol and 13 ps in ethylene glycol. In protic solvents, the ICT ch...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.