Abstract

It was found that cations formed by the protonation of 2-amino-3-(2'-benzoxazolyl)-quinoline (ABO) and 2-amino-3-(2'-benzothiazolyl)-quinoline (ABT) at the nitrogen atom of the quinoline ring exhibit excited-state intramolecular proton transfer (ESIPT). The two-band fluorescence of these cations is due to the emission from two species: the initial tautomer (short-wavelength band) and the ESIPT product (long-wavelength band). The relative intensity of the long-wavelength band depends on the basicity of the proton-accepting moiety and temperature. Quantum-chemical calculations demonstrated that ESIPT in cations involves overcoming a significant potential barrier, which increases with the decreasing basicity of the proton-accepting benzazole moiety. Using femtosecond absorption spectroscopy and nanosecond fluorescence spectroscopy, the effective ESIPT time in the studied cations was determined, which increased with decreasing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.