Abstract

AbstractThe relative contributions to total actual evapotranspiration (AET) from pond and riparian areas in a pond‐wetland complex in the Western Boreal Plain (WBP) of northern Alberta are measured using the Bowen ratio energy balance technique. Measurements show that a pond typical of the WBP evaporates at a rate more than twice that of the adjacent riparian peatland. Relating the actual to potential evapotranspiration over both surfaces yields Priestley–Taylor α coefficients of 0·69 and 1·11 for the peatland and pond respectively. Further results demonstrate that the sheltering and turbulent influences of the adjacent forested areas must be considered in the processes governing the permanence of WBP ponds. That is, forestry practices may inadvertently enhance the evaporative losses from the ponds, over and above the controls exerted by the regional climate. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.