Abstract
Dynamical aspects of information-theoretic and entropic measures of quantum systems are studied. First, we show that for the time-dependent harmonic oscillator, as well as for the charged particle in certain time-varying electromagnetic fields, the increase of the entropy and dynamics of the Fisher information can be directly described and related. To illustrate these results, we have considered several examples for which all the relations take the elementary form. Moreover, we show that the integrals of (geodesic) motion associated with some conformal Killing vectors lead to the Ermakov–Lewis invariants for the considered electromagnetic fields. Next, we explicitly work out the dynamics of the entanglement entropy of the oscillators coupled by a continuous time-dependent parameter as well as we analyse some aspects of quantum-classical transition (in particular decoherence). Finally, we study in some detail the behaviour of quantum quenches (in the presence of the critical points) for the case of mutually non-interacting non-relativistic fermions in a harmonic trap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.